Existing applicants/evaluators log in here
Username
Password
Cooperability
Project leader Vilibic Ivica
Project co-leader: Nedjeljka Zagar
Administering organization: Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, HR-21000 Split, Croatia
Partner Institution/Company: University of Ljubljana, Faculty of Mathematics and Physics
Grant type: 1B
Project title: Interpreting and forecasting Adriatic surface currents by an artificial brain (NEURAL)
Project summary: An operational oceanography forecasting service still does not exist in Croatia, an unacceptable omission for a country which has been investing major resources into its infrastructure in support to its development as a leading tourist destination, built on its natural beauty, climate and geographical position. The aim of this project is to investigate and to develop a hybrid ocean forecasting system for the eastern coastal regions of the Adriatic Sea based on the neural network approach. The project will use surface current fields measured by high-frequency oceanographic radars and mesoscale surface winds simulated by the high-resolution numerical weather prediction (NWP) models. A state-of-the-art atmospheric hydrostatic model Aladin/HR, which is used for the operational NWP at the Croatian national weather service (Meteorological and Hydrological Service, DHMZ, http://meteo.hr),, will be used in the project. In addition, a high-resolution version of the non-hydrostatic research WRF-ARW model nested into the ALADIN model and operating in real time in a research mode will provide a complementary input wind dataset for validation and intercomparison. The models’ outputs and the HF radar data will be introduced to the neural network and self-organizing maps algorithms to learn about the wind effects on the ocean and to create characteristic circulation patterns in the Adriatic. Once created through the learning process, the ocean current patterns will be forecasted by using outputs from the meteorological models only. The skill of the forecast will be estimated, and the models will be tuned to reach the best score. The forecast process will be in real-time and automatized, with forecasts published online and thus made available to numerous potential users. The advantages of the final neural-network forecasting operational system versus classical oceanographic models are numerous: (i) their results are based on real data and therefore highly reliable, (ii) they need several orders of magnitude less computational time and resources, and (iii) forecasts can be made available to final users in very short time. Societal benefits include various applications in disastrous events in the Adriatic. For example, our products can significantly decrease the search and rescue time and area at the sea, allow for better forecasting of oil spill and pollution spreading and can provide invaluable benefits to shipping, fishing, the tourist industry, and the community in general. Once established and validated, the new procedures and the hybrid ocean forecasting system can become a basis for an operational oceanography service.
Hrvatski sažetak: Operativna oceanografska služba još uvijek ne postoji u Hrvatskoj, što je nedopustiv propust obzirom za državu kojoj je jedna od okosnica razvoja turizam. Cilj projekta je razviti prototip hibridnog prognostičkog sustava za more u istočnom području Jadranskog mora temeljen na primjeni algoritama neuronskih mreža. Sustav bi bio temeljen na podacima površinskih struja mjerenih visokofrekventnim oceanografskim radarima i mezoskalnim površinskim vjetrovima koji su dostupni putem operativnih meteoroloških modela. Dva modela novije generacije bi se koristila za reanalizu i prognozu polja vjetra, Aladin/HR koji je operativan model u Državnom hidrometeorološkom zavodu, te nehidrostatski WRF-ARW model ugniježđen u operativni Aladin model. Rezultati modela i mjerenja bi bili uvedeni u algoritme neuronskih mreža, koje bi same učile o vezama između atmosferskih i oceanografskih polja. Jednom kada se istraže te veze, one bi se koristile za prognozu polja morskih struja temeljem isključivo prognoze površinskog vjetra. Načinila bi se verifikacija sustava, u smislu njegove najoptimalnije primjene za navedeno područje istraživanja. Naposljetku, sustav bi bio u stvarnom vremenu i automatiziran, te bi se prognoze objavljivale na internetu i bile dostupne potencijalnim korisnicima. Prednost neuronskih mreža ispred klasičnih oceanografskih modela jesu višestruki: (i) njihovi rezultati su temeljeni na stvarnim podacima, (ii) metoda zahtijeva višestruko manje kompjuterskog vremena od klasičnih oceanografskih modela, te (iii) prognoze su dostupne u vrlo krakom vremenu, gotovo istovremeno s prognozom iz meteoroloških modela. Postojanje ovakvog sustava je izuzetno korisno kod raznih akcidentnih i drugih događaja na Jadranu. Na primjer, ovakav sustav značajno smanjuje vrijeme lociranja i spašavanja na moru, dozvoljava bolju prognozu širenja polutanata i naftnih mrlja na površini mora, te ima značajnu primjenu u brodogradnji, ribarstvu, turizmu te društvu općenito. Jednom uspostavljen, ovakav pristup može postati jezgra budućeg sustava za operativnu prognozu stanja Jadranskog mora.
Amount requested from UKF: 1.352.176,00 HRK
Amount of matching funding: 601.320,00 HRK
Powered by Globaladmin